UTP-dependent and -independent pathways of mRNA turnover in Trypanosoma brucei mitochondria.

نویسندگان

  • K T Militello
  • L K Read
چکیده

Although primary transcripts are polycistronic in the mitochondria of Trypanosoma brucei, steady-state levels of mature, monocistronic RNAs change throughout the parasitic life cycle. This indicates that steady-state RNA abundance is controlled by posttranscriptional mechanisms involving differential RNA stability. In this study, in organello pulse-chase labeling experiments were used to analyze the stability of different T. brucei mitochondrial RNA populations. In this system, total RNA and rRNA are stable for many hours. In contrast, mRNAs can be degraded by two biochemically distinct turnover pathways. The first pathway results in the rapid degradation of mRNA (half-life [t(1/2)] of 11 to 18 min) and is dependent upon the presence of an mRNA poly(A) tail. Remarkably, this pathway also requires the addition of UTP and therefore is termed UTP dependent. The second pathway results in slow turnover of mitochondrial mRNA (t(1/2) of approximately 3 h) and is not dependent upon the presence of an mRNA poly(A) tail or the addition of exogenous UTP. In summary, these results demonstrate the presence of a novel, UTP-dependent degradation pathway for T. brucei mitochondrial mRNAs and reveal an unprecedented role for both UTP and mRNA polyadenylation in T. brucei mitochondrial gene expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UTP-dependent turnover of Trypanosoma brucei mitochondrial mRNA requires UTP polymerization and involves the RET1 TUTase.

Trypanosoma brucei mitochondria possess a unique RNA decay pathway in which rapid degradation of polyadenylated mRNAs is dependent on the addition of UTP, as measured by in organello pulse chase assays. To determine the mechanism by which UTP stimulates the degradation of polyadenylated RNAs, we performed in organello pulse chase assays under different conditions. Treatment of mitochondria with...

متن کامل

Addition of uridines to edited RNAs in trypanosome mitochondria occurs independently of transcription.

RNA editing is a novel RNA processing event of unknown mechanism that results in the introduction of nucleotides not encoded in the DNA into specific RNA molecules. We have examined the post-transcriptional addition of nucleotides into the mitochondrial RNA of Trypanosoma brucei. Utilizing an isolated organelle system we have determined that addition of uridines to edited RNAs does not require ...

متن کامل

RNA Editing TUTase 1: structural foundation of substrate recognition, complex interactions and drug targeting

Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editi...

متن کامل

Transcriptional and post-transcriptional in organello labelling of Trypanosoma brucei mitochondrial RNA.

In organello labelling of Trypanosoma brucei mitochondrial (mt) RNA was characterised with respect to nucleotide requirements and drug sensitivity. Mitochondrial transcriptional activity is maximal in the presence of all ribonucleoside-triphosphate NTPs, and can be inhibited by UTP depletion. Mitochondrial transcription can also be partially inhibited by actinomycin D (actD) or ethidium bromide...

متن کامل

Multiple terminal uridylyltransferases of trypanosomes.

The transferase activities that add uridylyl residues to RNA have been reported in several unicellular and metazoan organisms. Thus far, the two terminal uridylyltransferases (TUTases) involved in uridine insertion/deletion mRNA editing in mitochondria of trypanosomes were the only known enzymes with confirmed UTP specificity. Here, we demonstrate that protein sequences of editing TUTases may b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2000